Dokazuju tvrzení: a = a+1
Indukční krok, tj. (a = a + 1) => ((a+1) = (a+1) + 1), je triviální dokázat, přesto je snad zřejmé, že uvedené tvrzení neplatí.
To je ale to samé v bledě modrém. Matyáš napsal indukční krok pro a, tohle je stejný indukční krok, jenom zapsaný pro a+1. Pro a+1=0 nelze důkaz použít, protože a neexistuje.
Důkaz indukcí "bez pevného bodu" vyžaduje abys ukázal
platí-li tvrzení pro všechny předchůdce a, platí i pro a.Pro a=0 to znamená, že důkaz musí fungovat, aniž by bylo možné se opřít o jakéhokoli předchůdce.
IMHO v teorii množin se o matematické indukci v podstatě nemluví. Přirozený čísla jako objekt v TEMNU je vcelku nezajímavej objekt
O přirozených číslech a MI se mluvit musí, jinak by teorie množin nemohla sloužit jako základ ostatních matematických oborů.
Mimochodem, někdy někde jsem viděl Godel-Bernaysovu teorii množin, včetně pasáže o přirozených číslech a definice MI (včetně "Fin(x)", na které jsem o pár příspěvků výše zapomněl).
Navíc MI (z věty o slabém principu) je definovaná pro n ze Z, takže jsou dvě možnosti:
a) buďto MI v analýze je něco jinýho než MI v temnu (což je zjevně blbost)
b) nebo MI v temnu vyžaduje pevný bod.
MI definovaná pro celá čísla? Tomu nerozumím.
a) souhlasím, nevidím žádný rozdíl, kromě toho, že v analýze se zřejmě vždy pracuje s konstrukcí M ={n z N; tvrzení T(n) platí}
a indukce "s pevným bodem"-"bez pevného bodu" jsou jak v MA tak v TeMnu, navíc jsou obě indukce v podstatě jedno a to samé
b) chceš snad říct, že ta věta nefunguje, ani po opravách?
Co to znamená a použijeme MI. To znamená ověřit předpoklady. Předpoklad pak je, že je-li x podmnožinou a ordinálem (tos tam taky zapoměl, bez toho to imho nejde), pak je i prvkem. To celé bys měl ověřit prostředky TEMNA (axiomy, množiny, ne žádný čísla a podobný "výdobytky civilizace"). Vopruz.
Máš pravdu, zapomněl jsem, že x má být ordinál.
Číslo 2 nebo pojmy "funkce", "matematická indukce" jsou nějak teorií množin definované. Jakmile je definuji, mohu je pak normálně používat, bez axiomů.
Teorie množin není žádná uzavřená exotická část matematiky, naopak se "spojitě" rozvětvuje do ostatních disciplín matematiky.
A v
každém matematickém odvětví, ať je to teorie množin nebo analýza nebo cokoli jiného, mohu dělat důkazy čistě formální jen jako posloupnost formulí na základě výrokové a predikátové logiky (vopruz), nebo jako mix přirozeného jazyka a matematických symbolů (což je nejběžnější), ale i zcela bez matematických symbolů.
Takže když řeknu
matematická indukce říká: platí-li, že (jsou-li v podmnožině přirozených čísel všichni předchůdci n (ve smyslu uspořádání relací náležení), je tam také n), jsou v této podmnožině všechna přirozená číslatak je to taky teorie množin, i když pouze neformální.
To bys ale nesměl začít psát důkaz rovností
f(n) = min (f(i)+ f(j) ....)
Musel bys začít z druhé strany P(n)=...
Proč ne? Indukcí mám přeci zajištěnou existenci f(i) a f(j). Ten důkaz zároveň dokazuje existenci i rovnost.
Nikde nepoužívám nic, co by předem nebylo dobře definovaný - vždyť sáms psal, že v podstatě trochu kopíruju větu o konstrukci rekurzí.
Napsal jsem hloupost, je jedno z které strany začneš. V každém případě f nemůžeš používat, pokud nevíš, jestli existuje jako
celek: existence f(i), f(j) nestačí.
To znamená, že formálně je to takhle: rovnicí
f(n)=min (f(i)+ f(j) ....)=min (P(i)+ P(j) ....)=P(n)
nedokazuješ
P=fnýbrž
jestliže f existuje, pak P=f.(pozn. důkaz tohoto tvrzení odpovídá důkazu jednoznačnosti funkce definované rekurzí)
K tomu musíš dokázat, že f existuje, ale to je jasné, stačí do předpisu dosadit P.
(
pozn. naopak u rekurze je důkaz existence funkce složitější. Takže není tak úplně pravda, jak jsem říkal, že kopíruješ důkaz věty o definici rekurzí.
Jenomže tvůj důkaz se rekurzi (resp. existenční části důkazu věty o definici rekurzí) stejně nevyhne:
Máš funkci definovanou předpisem na základě svých vlastních hodnot v jiných bodech. Víš sice, že existuje právě jedna funkce daná předpisem, ale nevíš, jestli lze na základě toho předpisu sestavit algoritmus, který funkci vyčíslí.
Zřejmě platí následující tvrzení:
jestliže je předpis rekurzivní, tj. jestliže pro každé n je hodnota funkce určena na základě hodnot předchůdců, lze na základě tohoto předpisu algoritmus sestavit.
Důkaz tohoto tvrzení bude zřejmě analogický s existenční částí důkazu věty o definici rekurzí.
Takže i když se zkusíš vyhnout rekurzi, použiješ myšlenky jak existenční tak jednoznačnostní části důkazu věty o rekurzi.
)