jak bych si prosím mohl spočíst soustavu 2 lineárních rovnic o 2 neznámých v písmenkách
A jak soustavu počítáš teď? Běžně se u lineárních rovnic rozlišuje mezi soustavou s pravou soustavou a tzv. homogenní soustavou. Obecně se nepíše řešení lineárních soustav moc obratně. Skutečnost, že je soustava malá, na té neobratnosti nic nemění.
Příklad 1:
x + y = 0,
2x + 2y = 0.
To je legitimní soustava dvou rovnic. Jenže nejlepší řešení, jaké jsme s to napsat, je y = -x. Tedy geometricky dostaneme přímku.
Příklad 2:
x + 0y = 2,
x + 0y = 3.
Opět máme řešit soustavu dvou lineárních rovnic. Ale tentokrát dostaneme podmínku: y je libovolné a x musí být zároveň 2 a 3. Takže soustava nemá řešení.
Hodně záleží, kam bys chtěl studiem lineárních soustav o dvou rovnicích dospět. Pokud jde o geometrickou intuici, můžeš se na jednotlivé rovnice dívat jako na předpisy přímek (obecně tzv. nadrovin). S přibývajícím počtem rovnic musí platit, že na geometrický objekt představující řešení soustavy klademe více požadavků. To se efektivně přepíše jako průnik jednotlivých řešení. Pro soustavu dvou rovnic hledáme průsečík dvou přímek. Pro soustavu tří rovnic průsečík rovin atp. Pokud má rovnice nulovou pravou stranu, prochází přímka počátkem, v opačném případě je posunutá. V prvním příkladu jsme napsalo dvakrát rovnici téže přímky. Proto průsečík obou řešení dává opět přímku. Ve druhém případě naopak hledáme průsečík rovnoběžek, které nemají žádný společný bod.
Z pohledu (lineární) algebry je řešení soustavy lineárních rovnic dobře prozkoumáno. Samozřejmě se může stát, že máme řešit obrovskou soustavu, o niž mnoho nevíme. Pak je úloha težká. Ale teoretickou stránku charakterizovat umíme dobře. V prvním případě máme problém s
hodností matice soustavy (to jsou dva pojmy). Hodnost matice se dá definovat například jako počet
lineárně nezávislých řádků matice. Alternativně se dá definovat podle sloupců nebo třeba pomocí
minorů. O řešitelnosti soustavy lineárních rovnic a tvaru řešení mluví tzv.
Frobeniova věta. Pokud tě zajímá řešení soustav s nenulovou pravou stranou, dá se předchozí věta formulovat i tak, že
determinant matice soustavy není nulový. Takže ve vlastní implementaci řešiče by bylo fajn před samotným výpočtem řešení zkontrolovat řešitelnost. Jenom poznamenám, že pokud by naopak měla pravá strana být nulová, bude muset být determinant matice soustavy nulový. Pořád se ale může stát, že řešením bude přímka (třeba jako v příkladu 1).
Dost dobře se v úvodu hodí pochopit
Gaussovu eliminaci a operace, které můžeme na soustavě rovnic provádět, aniž bychom změnili její řešení. Takovým úpravám říkáme
ekvivalentní a při ručním zápisu úprav na maticích používáme ~ (vlnku). Ekvivalenci doopravdy chápeme ve smyslu, že matice nalevo a napravo od vlnky představují matice soustav s týmž řešením. Postup řešení se v praxi docela často odvíjí ještě od dalších požadavků. Někdy se vyplatí zpracovat soustavu tak, že snadno nalezneme řešení pro nové pravé strany. V tom případě se může hodit znalost explicitní
inverzní matice. Obecně je úloha hledání inverzí netriviální, ale pro matice 2x2 jsme s to napsat inverzi explicitně
https://www.mathcentre.ac.uk/resources/uploaded/sigma-matrices7-2009-1.pdf. Tvar oné inverze docela přímočaře plyne z tvaru a vlastností tzv
adjungované matice.
Někdy naopak chceme spočítat řešení pro více pravých stran naráz, ale jen jednou. Na počítači také u větších soustav často přecházíme k numerickému řešení. To je celá dost široká kapitola. Samozřejmě se do jednoho příspěvku nevejde celá teorie, ale snažil jsem se aspoň zmínit některé důležité pojmy. Pro hlubší pochopení by bylo potřeba projít nějaký ucelený text nebo kurs.
PS: Snad jsem nic zásadního nepřehlédl.