3
« kdy: 16. 06. 2021, 12:06:53 »
Tak opět zdravím a jdeme na to.
Gaussova eliminace částečně pomohla, ale i tak je to docela fuška v tomto případě bezčíselných rovnic a pořád je velká pravděpodobnost, že někde něco zapomenu sečíst/odečíst/vynásobit ... se správným znaménkem.
Počítání s determinanty pomocí Cramerova pravidla, to je elegantnější způsob. Ten se mi líbí.
Rozchodil jsem i interaktivní řádek Pythona(3) a též se mi to podařilo. Výsledek byl pro mě srozumitelný pouze v řádkové formě, ne ve zlomcích.
On to navíc ale ještě vše roznásobil. Musel jsem to roznásobit tedy i na papíře.
Místo např. (x1 - x2)(y1 - y2)x1 ..., což by mi stačilo, udělat ještě x1x1y1 - x1x1y2 - x1x2y1 + x1x2y2 ....
Ano, např. (x1 - x2)(y2 - y1) je koeficient 'a' v rovnici:
(x1 - x2)(y2 - y1)x + (y1 - y2)(y1 - y2)y + (x2 - x1)(x2 - x1)x1 + (y1 - y2)y1 = 0.
Nechci konkrétně oznamovat přesně co dělám, ale vzorce pro výpočet x a y jsou součástí kódu programu, což se dá asi předpokládat. Parametry (x1...y1) jsou proměnné představující nějaké podmínky. Dvě rovnice zde představují opravdu dvě přímky v rovině, a mě zajímá pro další potřeby jejich průnik. A průniků je hodně, protože i podmínek je hodně.
Budu si stejně muset chtě ještě udělat čas na tu oktávu.
Za dobré tipy děkuji, ať žije Root.